
Java PathFinder User Guide

Klaus Havelund

NASA Ames Research Center,

Recom Technologies,

Moffett Field, CA, USA

havelund_ptolemy.arc.nasa.gov

http://ase.arc.nasa.gov/havelund

August 3, 1999

Abstract

The JAVA PATHFINDER, JPF, is a translator from a subset of JAVA 1.0 tO PROMELA, the

programming language of the SPIN model checker. The purpose of JPF is to establish a

framework for verification and debugging of JAVA programs based on model checking. The

main goal is to automate program verification suchthat a programmer can apply it in the

daily work without the need for a specialist to manually reformulate a program into a dil_erent

notation in order to analyze the program. The system is especially suited for aaalyzing multi-
threaded JAVA applications, where normal testing usually falls short. The system can find

deadlocks and violations of boolean assertions stated by the programmer in a special assertion

language. This document explains how to use J_F.

Contents

3

4

5

6

7

Introduction

Specifications 5

2 i Assertion Methods 5

o _ Error Method 5_._ °

2.3 Print Methods 6

2.4 Atomic Execution Methods 6

2.5 Non-Deterministic Switch Statements 7

Verification Parameters in the Code 8

A Program Example : The Bounded Buffer 9

4.1 The Buffer Class 9

4.2 Setting up an Environment 11

4.3 Property Specification 12
4.4 Predicting Number of Objects Created 12

A Guided Tour 14

5.1 Compiling, Executing and Translating the Program 14

5.2 Setting SPiN Options 15

5.3 Model Checking 17

5.4 Error Messages 18

Verification Experiment 22

Specifying Invariants 24

7.1 Assertion in the Code 24
7.2 Invariant in the main Method 24

?.2.1 Directly as an Assertion 24

7.2.2 Indirectly by Calling an Invariant Method 25

7.3 Invariant as a Thread 26

8 Features of JAVA 1.0 Not Translated 2?

&l Compilation Units 27
8.2 New Names .. 27

8.3 Predefined Types 27

8.4 Subclassing 27

8.5 Variable Declarations 27

8.5.1 Modifiers 27

8.5.2 Array Declarations 27
8.6 Methods and Constructors 28

8.6.1 Modifiers 28

8.6.2 Overloading and Overriding 28

8.6.3 Recursion 28

8.8.4 Names of Called Methods 28

8.7

8.6.5 Array Argument and Return Types 28
8.6.6 Actual Parameters in Calls 28

Expressions .. 28

8.7.1 Names 28

8.7.2 Object Instantiations 29

8.7.3 Assignment Expressions 29
8.7.4 Unary Expressions 29

8.7.5 Binary Expressions 29

8.7.6 Ternary Expressions 29
8.8 Statements .. 29

8.8.1 Switch Statements 29

8.8.2 Continue Statements 30

8.8.3 Labeled Statements 30

8.8.4 Try-catch-finally Statements 30

1 Introduction

This manual describes JAVA PATHFINDER (JPF) [5], a translator from JAVA [3] [2] [1] to PROMELA,

the programming language of the SP{N model checker [7]. The purpose is to establish a framework

for verification and debugging of JAVA programs based on model checking. The tool is named after

the rover operating on Mars in 1997 called the "Mars PathFinder", and is a play on words: it finds

the paths of a JAVA program that lead to errors.

SpIN is a verification system that supports the design and verification of finite state asynchronous

process systems. Programs are formulated in the PROMELA programming language, which is quite

similar to an ordinary programming language, except for certain non-deterministic specification

oriented constructs. The SPIN model checker can automatically determine whether a program
satisfies a property, and, in case the property does not hold, generate an error trace. SPIN also
finds deadlocks.

A significant subset of JAVA version 1.0 is supported by JPF: dynamic creation of objects with

data and methods, class inheritance, threads and synchronization primitives for modeling monitors

(synchronized statements, and the wait and notify methods), excerptions, thread interrupts, and

most of the standard programming language constructs such as assignment statements, conditional

statements and loops. However, the translator is still a prototype and misses some features, such as

packages, overloading, method overriding, recursion, strings, floating point numbers, some thread
operations like auspend and resume, and some control constructs, such as the continue statement.

In addition, arrays are not objects as they are in JAVA, but are modeled using PROMELA's own

arrays to obtain efficient verification. Finally, we do not translate the predefined class library.
Note that many of these features can be avoided by small modifications to the input code. In

addition, the tool is currently being improved to cover more of JAVA. Despite the omissions, we

expect the current version of JPF to be useful on a large class of software. A front-end to the

translator checks that the program is in the allowed subset and prints out error messages when
not. The translator is developed in COMMON LISP, having a JAVA parser written in MoscowML

as front end. A description of an application of JpF to a game server can be found in [6].
The manual is written such that no previous knowledge about the SPIN model checker is needed.

All needed SPIN technicalities are described in this document.

The manual is organized around an example buffer program as follows. Section 2 describes how

formal specifications of properties are stated as assertions in the JAVA code. Section 3 describes

how one can guide the model checker to do a more efficient job by estimating how many objects

are created by each class. Section 4 describes the example program and its specification. Section 5

describes, step by step, the interaction with the system needed in order to model check the JAVA

program. Section 6 gives some examples of errors that can be seeded into the example program,

and the expected response by JPF. Section 7 says a bit more about specifications, in particular
how class local invariants can be specified. Finally, Section 8 describes the parts of JAVA 1.0 that
currently cannot be translated.

4

2 Specifications

As will be de,scribed in the following, a JAVA program can be annotated with aasertions stating
boolean properties to be satisfied at certain places in the code. JPt_ will examine all thread

interleavings trying to violate the assertions. In addition to assertion violations, JPF will look for

deadlocks. A typical deadlock situation is for example where two threads Tt and T2 each try to

lock two resources RL and R2. Suppose Tt locks Ri, and that T_ then locks R2. If now Tl tries to

lock R2 and T2 tries to rock Rt a deadlock situation has arisen. JPF will detect situations of this

kind independent of whether any assertions have been stated.

In both cases (assertion violation, deadlock) SPiN produces an error trace showing how the cor-

responding PROMELA program reaches the error state from the initial state. Since there currently

is no automatic mapping back to JAVA traces from such PROMELA traces, and since it is very hard

to read the PROMELA traces, we have provided a set of print methods with which one can print

out essential information from the program execution. This information will be printed on SPIN's
graphical message sequence charts as will be illustrated later on.

Assertions and print statements are written in the JAVA code as calls of methods defined in the

Verify class shown in figure 1. The Verify class also contains methods for turning JAVA code

into atomic blocks executed without interleaving from other threads, and it contains a method for
achieving non-determinism. The methods of this class will be described in the following.

Generally, all the methods in the Verify class are defined as static, which means that they

can be called by just prefixing the method with the class name as in Verify.assert(...). That

is, without instantiating the class into an object. Furthermore, the bodies of these methods are of
no importance to the verification, the bodies could be empty, or changed by the programmer to

something different. Their contents only have importance when actually running the program on

the JAVA Virtual Machine, and hence may have value during normal testing. Note that one is not

allowed to add new methods to the Verily class or change the signatures (number of arguments

and their types) of the existing methods. The Verify class must be included in the JAVA program
in case any of its methods are called. It can be found in the distribution.

2.1 Assertion Methods

The classcontains two (overloaded) assert methods, one taking a boolean argument, and one

taking a string and a boolean argument. The purpose of these two methods is the same: to

check that the argument condition evaluatesto true at the place of call.The stringonly servesa

documentary purpose, and willget printedout on.the message sequence chart incase the condition

isviolated.Examples of callsare:

Verify.assert(count == 6) ;
Verify.assert ("count]- "6", count == 6) ;
Verify. usert ("#7", count =- 6) ;

2.2 Error Method

In some casesa programmer knows that ifcontrolreachesa certainpart of the code an errorhas

occurred. At thispoint one can callthe error method, which unconditionallywillsignalan error,

causing the documentary argument text stringto be printedout on the message sequence chart.

The followingtwo statements are logicallyequivalent:

if (x =- O) Verify.error("x is zoro");

Yerify.assert("x ie zero",x !', O) ;

5

class Verify(

public static void assert(boolean b){

if (!b) System.out.prlntln("..* assertion broken");
)

public static void assert(String s,boolean b){

if (!b) Systsm.out.prlntln("oss assertion broken : " + s);
}

public static void error(String s){

Systm.out.println("o** error : " ÷ s);
}

public static void print(String s){

System.out.println(g);
)

public static void print(String a,int i){

Syst_.out.printl_(a ÷ " : " ÷ i);

}

public static void print(String s,boolean b){
Syst--.out.println(e ÷ " : " + b);

)

public static void beginAtoaicO{}
public static void endAtoaic(){}

public static Int random(int sex){

juva.util. Pamdom random = nee java.util.P2mdouO;
int next = random.nextlnt();

if (next < O)next = -next;
return (next X (max ÷ I));

}

Figure 1: The Verify class

2.3 Print Methods

As mentioned earlier, the Verify class provides a collection of print methods with which one can

print out information on SPIN's message sequence charts to _luetrate error traces. Each of these

methods takes a str_ argument, which will be printed out, and in addition, two of the methods

take a value to be printed, either an integer or a boolean. Examples of caJls are:

Verify.prlnt("mthod _iLT called") ;

Verlfy.prlnt ("value of tmp",x) ;

Verlfy.prlnt("tmperature ok",tslp < 80);

Note that a boolean will be printed as a 0 (false) or 1 (true).

2.4 Atomic Execution Methods

In some situations it may be needed to cut down the search space in order to verify a program

within reasonable space and time. Code that issurrounded by callsof the methods boginAtomlc ()

and endAtomlc () will be executed in an atomic mode without interleaving from other threads being

allowed. The following example illustrates how the initialization of an array is made atomic:

public void initiali|,(){
Verity.b.giaAtoaic();

for (x • O;z < lO,z+÷)
my__rray[x] = -I;

Vorify.ondAtomicO;

Note that making code execution atomic in this way typically cuts down the state space, but that

it may remove the possibility for certain interleaving errors to occur. It is, however, safe to apply

around code that effects only local variables not accessible from other threads. But even in the

unsafe case the technique may be useful to "hunt down" an error that one has suspicion about, or

simply for doing various kinds of experiments on a model that is too big for e_cient verification.

The difference between using these two methods and using the synchronized keyword of JAVA

is that the latter makes thread execution atomic with respect to a single object. In contrast, the

code between beginAtomic() and endAtomic() will be executed atomically with respect to the

whole program.

2.5 Non-Deterministic Switch Statements

The random method allows for writing non-deterministic switch statements. It returns a random

number between 0 and max (both numbers included). It can only be called in a switch statement
as follows (axed nowhere else):

switch (Verify. random(2)) (

case 0 :

X = true;

break;

case 1 :

y ffi true;
break;

case 2 :

x = true;

y = true;

break;

When executing this program one of the three entries will be non-deterministically chosen (due to

the coding of the random method). When translating it using JPF a non-deterministic construct

will be generated. For this translation it does not matter what the argument to the random method

is - it has absolutely no effect on the translation, and is only used when executing the program.

Note that the switch statement is generally supported and will get the normal meaning if the

branching expression is not Verify. random(...).

3 Verification Parameters in the Code

A JAVA program may create an arbitrarynumber of objectsof any of itsdeclared classes.The

model checker,however, only allowsat most 2 objectsofany classto be created,unlessotherwise

stated inthe Parameters classby the user,as described inthe following.

Suppose a program contains threeclasses:CI, C2, and C3. Suppose furthermorethat we expect

6 objectsto be createdof classCI, I object tobe createdofclassC2, and at most 2 objectsofclass

C3. We can specifythisin the Parameters classas done inFigure 9,where constantsC1_size and

C2Jize specifyour estimates of the number of objectscreated from classesCI and C2. The size

of C2 (1,.whichislessthan the default2) need not be stated,but statingitwillreduce the sizeof

the pre-declared data area for this class.

clus Parameters{
s1:aticfinal iat Cl_slze • 6;

s_:aticfiaal iat C2_slze = I:

Y

Figure 2: The Parameters class

4 A Program Example : The Bounded Buffer

.If'F will be illustrated by analyzing a complete, small, but non-trivial JAVA progran_. This pro-

grain, included amongst the examples distributed, is described in the following, together with a

specification of its desired properties. The program contains an error, later to be detected by the

tool. In order to generate error traces on message sequence charts, Verify. print (...) statements

have been inserted in relevant places in the code.

4.1 The Buffer Class

The JAVA program that we are interested in verifying properties about is a bounded buffer, repre-

sented by a single class. An object of this class can store objects of any kind (objects of subclasses

of the general top level class Object). Figure 3 shows the declared interface of this class. It

contains a put method, a get method and a halt method. Typically there will be one or more

producer threads that call the put method, and one or more consumer threads that call the get

method. The halt method can be invoked by a producer to inform consumers that it will no longer

produce values to the buffer. Consumers are allowed to empty the buffer safely after a halt, but if

a consumer calls the get method after the halt method has been called, and the buffer is empty,

an exception object of class HaltException will be thrown. A class is an exception class if it is a

subclass of the class Throwable. In particular, class Exception is a subclass of Throwable.

class HaltF.xception extends Exception(}

interface BufferIntsrface (

public void put(Object x);
public Object get() throes HaltExcsption;
public void halt() ;

}

Figure 3: The Buffer interface

Figure 4 contains the Buffer class annotated with line numbers for later reference. The class

declares an array of length 3 to hold the objects in the buffer. In addition to the array, a couple of

pointers are declared, one pointing to the next free location, and one pointing to the next object
to be returned by the get method. The variable usedSlots keeps track of the current number of

elements in the buffer. Finally, the variable halted will become true when the halt method is.
called.

The three methods of the class are all synchronized (note the synchronized keyword). Hence,

each of these methods will have exclnsi_,e access to the object when executed. That is, when one of

these methods is called on the buffer object by a thread, the buffer gets locked to serve that thread,

and it is unlocked again at the end of the method call. The put method takes as parameter the
object to be stored in the buffer and has no return value (void). It enters a loop testing whether

the buffer is full (i.e. having 3 elements) in which case it calls the built in wait method. Calling the

wait method within a synchronized method suspends the current thread and allows other threads

to execute synchronized methods on the bbject. Such another thread can then call the noisily

method which will wake up an arbitrarily chosen waiting thread to continue past its wait() call.

The nocifyAll method wakes up all such waiting threads.

When finally the put method gets past the while loop, it is known that the buffer has free space,

and the insertion of the new object can be completed. In case the buffer was in fact empty, all

waiting consumers are notified.

The get method is a little bit more complicated because it also takes into account whether the

buffer has been halted. Basically, it will wait until there is something in the buffer, and return

this element, unless the buffer is empty and at the same time has been halted. In this case, a

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

4B.

46.

I. class Buffer iapleaents Bu_ferXaterface {

2 static final iat BXZE • 3;

protected Object_ array • nov Object[SXZE];

pro_ected int putPtr = O;

protected int getPtr - O;
pro_ected int usedSlots - O;

protected boolean halted;

public synchronized void put(Object z) {
vhile (usedSlots -- SIZE)

try {

Verify.print("producer wait'°);
uait();

} catcb(InterruptedException ex) {};

Verify.print("put",putl_r);
_ay[putPCr] - x;

Puc_r - (putPtr + 1) Z SIZE;

if (use<ISlets -- O) notifylll();
usodSlots++;

public synchronized Object getO throes HaltException{
vhile (ueedSlots -- 0 & !halted)

try {

Verify.print("cons_r unit");

wait();

} catch(InterruptedException ez) {};
if (halted) {

Verify.print("consumer gets halt exception");

HaltF.xception he 8 hey BLltILzceptionO;
throu(he);

);
Yerify.print(UKetN,getPcr);

Object x - acray[getP1:r];

array[getPCr] - null;

getl_r - (getPcr + I) _ SIZE;
if (usedSlete ,-, _XZE) netifyAll();

usedSlotl--;

return x;

47.)

public synchronized void haltO{

Verify.print("producer mets halt flag");

halted - true;

notify111();
}

Figure 4: The Buffer dass

10

HaltExceptlon is thrown. Otherwise, the next buffer element is returned, and producers axe

notified if the buffer beforehand was full, in which case they may be waiting.

4.2 Setting up an Environment

In order to verify properties about this class, without looking at a complete application within

which it occurs, we can create a small application using the buffer. We say that we set up an

environment consisting of a number of threads accessing the buffer, and then we prove properties

about this small system. This can be regarded as unit testing the buffer. Concretely, we shall
define two thread classes: a Producer and a Consumer class, and then start the whole system as

shown in the main method in Figure 5.

clamm Main {

public static void main(StringO arts) {
Bu/fer b • age Buffer();

Producer p =nev Producer(b);
Consu_r c = nov Consult(b);

)

Figure 5: The main program

First, in order to illustrate the translator's capabilities to translate inheritance, we define the

objects that are to be stored in the buffer, see Figure 6. A class Attribute is defined, which

contains one integer variable. The constructor method with the same name as the class takes a
parameter and stores it in this variable. The class AttrData extends this class with another field,

and defines a constructor, which takes two parameters, and then calls the super class constructor

with the first parameter.

class AttributQ{

public int attr;

public Attribute(int attr){
this.attr • attr;

class AttrData extands Attributa{
public int data;

public AttrData(int actr,int data){
super(attr);
this.data • data;

)

F_ure 6: The Attribute and AttrData classes

The producer and consumer threads that are actually going to use the buffer are defined in
figures 7 and 8. The Producer class extends the Thread class, which means that it must have a

run method, which is then executed when sa object of this class is started with the scott method.
As can be seen, the constructor of the class in fact calls this start method in addition to storing

locally the buffer for which elements will be produced. The run method adds 6 AttrVata objects

to the buffer, with attributes 0... 5 (in that order) and squares as data, and then calls the halt
method on the buffer.

11

The Consumer class also extends the Thread class. The run method stores all received objects

in the received array (or at most 10 of them). Note how the receiving loop is written inside a

try construct, which catches and prevents a HaltException from going further.

¢1ae8 Producer extends Thread {
ststlc final int COUNT- 6;
private Buffer btutfer;

public Producer(Buffer b) {
buffer • b;
this.start();

}

public void run() {
for (int i • O; i < COUNT; i÷+) {

AttrData ad • neu AttrData(i,i*i);
buffer.put(ud);
yield();

};
buffer.halt();

Figure 7: The Producer class

4.3 Property Specification

Two assertions in Figure 8 state the properties we want to verify. The first assertion states that

the consumer receives exactly 6 elements from the buffer. The second assertion within the for loop

states that the received elements are the correct ones (at least wrt. the attr value). In addition to

these assertions, the system will look for deadlock situations, which need no explicit specification
by the user.

4.4 Predicting Number of Objects Created

As can be seen from Figure 7,the producer creates6 AttrData objects.Since the defaultnumber

of objects that can be created is 2, we need to specify6 as the new limit.This isdone in the

Parumters classin Figure 9.

12

cla,s Consumer ezteadm Thread (

private Buffer buffer;

public Coa,umer(Buffer b) {
buffer = b;

this.start();
}

public void run() (
int count = O;

AcCrOaCa_ received = uev AcCr0aCsCl0] ;

cry{

vhile (count < I0){

receiTed[count] • (AttrData)buffar.gexO;

COI3LDt÷+ ;
)

ca_ch(Hal tException e){};

Verify. prise ("Consumer endz") ;
Verify.user_("¢ount != COUNT", count == Producmr.COUNT) ;

for (int i = O; i < count; i++){

Verify.a_ser_("eron_ value received",receivedEi].attr == i);}

Figure 8: The Consumer class

clus Parameters{

stetic finLl, int AttrData_siz. • 6;

}

F/gure f): The Paruecers c/ass

13

5 A Guided Tour

This section describes how one model checks a JAVA program. The reader is assumed to know how

one generally writes, compiles and executes JAVA programs. In addition, the system must have

been installed as described in the installation guide. This means basically that the following two
scripts must be available:

• xspin : the graphical interfaceto SPIN.

• jpf : the JAVA to PROMELA translator.

5.1 Compiling, Executing and Translating the Program

The JAVA program must be storedina fileofthe form: myprogram, java. Firstyou should compile

the program to check that itisa validJava program inthe firstplace:

javac alrprogr--, java

Compilation should always be applied for the purpose of type checking the program before the

translator is applied, since the translator assumes a well-formed JAVA program.

Try now to execute the program by typing:

java Nain

The most likely result will be the following:

$ java Main
put : 0

get : 0

consumer vait

put : 1

get : 1

consuamr va.it

put : 2

get : 2

consumer gait

put : 0

get :0
consu_r vait

put : 1
get : 1
conJm_r gait

put :2

get : 2

COml_mor oait

producor sots halt flag

consumer gats halt axcoptioa

Consumer ends

We see how the vorlfy.prlnt statements in the code printout on the standard output, and the

program terminates normally. Note, however, thatdue to "non-deterministic"schedulingofSolaris

threads (intowhich JAVA threads are mapped whMl the JAVA Virtualmachine isversion1.1.5or

newer),the execution may infactchoose a did•rentpath,and break an assertionsinceour program

isbugged. The chance that itdoes is,however, very low (lessthan 5% according to our measures).

Hence, the chance of catching the error by normal testingisequallylow. Try to see ifyou can

break the assertionby executing the program severaltimes.

Now to translate the program into PROMELA, type:

14

jpf ayprogram

Note that you should not give any . java sul_ix. This call will translate the file myprogram.java

into a PaOMELA program, which is written to the file:

myprogr_, spin

This file can now be loaded into XSPIN. In the following we describe how to set up XSPIN and how

to load and model check the program in myprogram, spin.

5.2 Setting SPIN Options

XSPIN is called as follows:

xspin

As a result, a SPIN window pops up as shown in figure 10 (the body of the window will, however, be
initially empty). From now on, the interface is SP[N's interface. To load the translated PROMELA

program select FILE: Reopen. This will result in the window shown in the figure.

Figure 10: SPIN main window

The first time the SPIN window appears a number of options have to be set before model checking

can be started.We shallgo throughtheseoptionsinthefollowing.Ifyou clickon the &UN button,

a menu with the following possibilities, amongst others, appear:

• Se_ Simulation Parameters

• Sel; Verlfica_ion Parameters

• (Re)Run Verification

15

First click on P,UN:Set-Simulation-Parazneters. This hrmgs up th,, window shown in Figure

11. You should chang,, ore, on-of field, namely the Data-Values-Panel rich|, to off as shown on

the figure. This is to avoid slow down of the simulator while printing error traces generated by the

model checker. Then click on the Cancel button (the option will actually be set as specified).

._--i _- __i' _S!mulat_10n0 puon_s, _, _i:_._

!ill il_: Panel - wlt_l: • Randoal (using se_l

• Step Number Labels =--'_1 I_

v Source Text Labels v Guided (using INI_I

v Interactive .-.u_

v Condensed Spacing

_J Time Sequence Panel - with:

• Interleave_l Steps

v One ItlnOow per Process

v .One Trace per Process

.J Data Values Pamll •

II Tra, dL I_ffefe@ thM_nel$

• • Track Global Variables

J otsp!=_.-_,'_..mr_.T,=,' .1, wsc
j (xecut_on liar Pan=Y_'_ _

' ""- II
• Blocks New Wsgs

v Loses New Ilsgs ?:_

Figure 11: SPIN simulation options

Now, in the SPIN window (Figure 10) click on RUN:Set-Verification-Parameters. This brings

up the window shown in Figure 12. Turn off the Report-Unreachable-Code option as shown in

the figure.

I __

• Safety (state properties)

I Assertions

I Invalid Endstates

Figure 12: SPIN verification options

Next, click on Set-hdvanced-0ptions. This will create the window shown in Figure 13. Eater a

-J in the Extra-Run-Time-0ptions field as shown on the figure. Also, activate Use-Compression.

Then remove the two verification option windows by hitting respectively Cancel (figure 12), and

Set (figure 13). This will set the options.
We shall just mention a few other parameters that may have importance. First of All, the

16

Figure 13: SPIN advanced verification options

Superl;race/Bitstateoption(Figure12)can be turnedon. This willcausesome statesto be

ignoredduringmodel checking,hence reducetime and memory consumption. Of course,some

errorsmay thennot be caught.Thisoptioncan be usedwhen themodel istoobigforverification.

Second,one ofthe two optionsSafety (assertionviolations)and Invalid-Endstates(dead-

locks)(Figure12) may be turnedoff.For example,one may want to lookonly fordeadlocks,

ignoringtheassertionsintheprogram.

Third,one canexperimentwiththePhysical-Memory-Available, Estimated-State-Space-Size,

and Maximum-Search-Depth (Figure 13). Use the explain buttons to get an explanation.

5.3 Model Checking

To activatethe SPIN model checkerclickon RUN:(Re)Run-Verification in the SPIN window

(Figure10).SPIN willnow compilethePROMELA program intoa C program,whichwhen executed

willdo themodel checking.While thecompilationintoC takesplace,a smallwindow popsup with

the text:"Pleasewaituntilcompilationofthe executableproduced by spincompletes".When

thiswindow disappears,themodel checkerstartsexecuting(thenow generatedC program).When

thisterminates,a window withthe verificationresultappearsasshown inFigure14.

In our case it says (top line): "assertion violated", and further down it states: "errors : 1". If
there are no errors "errors : 0 '_is printed. If there is an error, as in our case, an extra window pops

up as shown in Figure 15, which suggests actions to be taken at this point. SPIN has created an
error trace, leading from the initial program state to the state violating the assertion. We shall now
simulate that error trace. Hit Run-Guided-Simulation. That will create yet the window shown
in Figure 16. Hitting the Run button in that window will now cause the error trace to be executed
(simulated), whereby the Veri_y. print statements will now cause printing on a graphical message
sequence chart, as shown in Figure 17.

This message sequence chart can now be interpreted as follows. The producer (center vertical
line) puts 3 values into the buffer, in positions 0, I and 2. Then it calls the vait method. The
consumer gets the first value (in position 0) and then notifies the producer, indicated by a (red)
arrow. Then the consumer gets the two remaining values and waits. The producer then puts the
fourth value into position 0 (recall that the buffer is circular), etc. At the end, the producer puts
the last sixth value in position 2 and notifies the consumer. Then the producer sets the halted

flag. When the consumer now calls the get method, the condition halted in line 27:

i_ (halted) {

17

assertion v_olated 0 (at depth 394)

pan: wrote oart_ln.trall
(Spin Version 3.2.4 _ 22 October lg98)

Ilarmng: Search not completed
+ Partlal Order Reduction

+ CotnpreSSlOn

Full statespace search for:
never--claim
assertlon VlO|atlons

cycle checgs
_nval_d endstates

State-vector 456 byte, depth reached 464, errors: 1
709 states, stored
275 states, rretched
984 transitions (= stored+matched)
139 atomic steps

t_lsh conflicts: 0 (resolved)
(max size 2^19 states)

2.787 memory usage (Mbyte)

nr of templates: [glo_ls procs chans]
collapse counts: [152 157 237 19]

real O. 2
user 0.1

0.0

- (not selected)

- (disabled by -.OSAFETY)
÷

Figure 14: SPIN error report: assertion violated

Figure 15: Actions suggested by SPIN

will evaluate to true, and an exception will be thrown. Hence, the consumer does not get the last
value. The correct code for this line is:

if (utd$1ot= == O) {

You may want to correct the program, and then try inserting your own errors, or the ones suggested
in Section 5.4.

Note that if the Java program does not contain any Verify. print statements nothing will get
printed on the message sequence chart. SPIN will print a PROM_.LA error trace in the window
shown in Figure 16, but this PROM_.L^ trace is hard for a human to relate back to the JAVA
program, and is not recommended as a source of information.

5.4 Error Messages

Even if program compilation is successful, JPF may still yield error messages. There are two sources
of such.

18

iwarnlng: line 692 "9an__n *°. atomic lnslcle atoe_c (Ignored)
._ warning: line 692 "oan_)n _, d_steip)nslde al:omlc

warning: l_ne 592 "pan__n", atomic _nslde al:om_c (?gnored)

[eklrnlng: 1The 892 "oan_ln", d_step inslde d_sl:eD Ognored)
[1: OrOC 0 (:Inlt:) llne 728 _Dan..ln _ (sta[:e 4) [IMaln_Next_ =

..J (Mai n_Nexr.....,.l._]

...... i , IIII III I I I

Figure 16: Simulation choices

First, the program may be a valid JAVA 1.1 program, but not a valid JAVA 1.0 program. An
error message should be printed out if this is the case. The basic difference between JAVA 1.0 and
JAVA 1.1 is the new notion of inner classes. JPF cannot handle inner classes.

Second, in case the program is a valid JAVA 1.0 program, the translator checks that it is within
the subset being translated. If not, error messages are printed out on the file to which the PROMr.LA

program would normally be written. Hence, just click on the Reopen button in the SPIN window

(Figure 10) as usual to load the result of the translation. Any error messages will appear clearly

at the beginning of the loaded file. As an example, suppose we write a JAVA program containing

the following class definition:

clu. O_n=o=.{
int x;

public Told shi_t_lef_(in_ i){

X <<= i;

}
}

using an assignment operator (<<=) not supported by the translator. When translating and then

clicking on Reopen in the SPIN window, the contents of that window will appear as shown in Figure
18. For each error it is indicated in which class it occurs, and in case it occurs in a method, also
which method.

19

Figure 17: Message Sequence Chart for assertion violation

20

SPIN DESIGN

_t I error(s) found

VERIFICATION _I36s Fi.d:Jl

Figure 18: Error messages when outside translated subset

2!

6 Verification Experiment

in order to illustrate the effectiveness of JPF (and SPiN of course) we have seeded 21 errors in the

program shown in Figure 4, and for each error analyzed the now incorrect program using JPF.

First, however, we have corrected the program as indicated in Section 5.3 by changing line 28 to:

if (usedSlots == 0) {

This yields a correct program as starting point. The result of the experiment is shown in Table

1. For each error we give the line numbers changed, referring to Figure 4, and the new contents

of these lines. As an example, error 1 is obtained by changing line 4 to "protected ins putPtr

= 1;" (initializing to 1 instead of to 0). Error 14 was the one seeded into the program from the
start.

The results of applying JPF are shown in the fourth column. That is, the result of applying the
SPIN model checker to the PROMELA code generated by JPF. The possible outcomes are deadlock

(D) and any of the two assertions being violated (A1 referring to the first occurring "count ffi= 6"

and A2 referring to the second "received[i] .attr ffi= i"). The point here is that all the errors
are caught.

The last two columns show the result of running the modified JAVA program on two versions

of the JAvA Virtual Machine (JvM) in order to see whether plainly executing the program would

highlight the errors seeded. JVM version 1.1.3 is an older version being very deterministic. This

means that executing a multi-threaded program several times typically yields the same result

every time. JVM 1.1.6 is the newer version with native threads, where JAVA threads are mapped

to Solaris threads. This version is therefore non-deterministic, potentially yielding different results
for different runs of a multi-threaded program.

Every program has been run several times (from 30 to 100), and the numbers indicate the

percentage of runs that have highlighted the error, either via a deadlock, an assertion violation, or
a thrown NullPointerException.

All runs,model checking as wellas JVM runs,have been executed on a Sun Ultra Sparc 60 with

512 Mb ofmain memory, and with the Solarisoperating system version5.5.1.

Running the SPIN model checker on the PROMELA code generated by JPF typicallyused less

than halfa second to findan errorand explored between 40 and 400 statesand a similarnumber

of transitions.In a few cases (error8 and 10) approximately 10000 statesand 18000 transitions

were explored in lessthan 2 seconds.

"Errors" 11 and 20 are special(marked with a *) in the sense that they are not reallyerrors

when using the environment describedinSection4.2.This environment only createsone consumer,

and to make the errorsmanifest themselves,we needed to createtwo consumers as shown below:

class Nain {

public static void main(StringQ args) {
Buffor b = nee BufforO;

Producor p • nov Producer(b);
Couumor cl = hoe Consunsr(b);
_u_r c2 - nov Coummor(b);

}

In addition, with two consumers the assertions make no sense and were deleted. Hence, we

were now just looking for deadlocks. The table rows for these errors show the result of verifying
and executing in this changed multi-consumer environment. The verification of error 11 needed as

much as 8 minutes, exploring 2.4 million states and 6 million transitions before the deadlock was

found. We verified a down scaled version of this error, with a buffer size of 2 (instead of 3) and the

producer only producing 3 values (instead of 6). Also here the deadlock was found by the model

checker, but now using 1 minute, and exploring 423096 states and 1 million transitions.

22

Tablet: Verificationresults
Nr. Line Modification (changed to) Jpg JVM 1.1.6 JVM 1.1.3

I 4 protected Int putPtr - 1; A2 100 I00

2 6 protected int usedSlots = 1; At, A2 I00 I00

3 I0 while (usedSlots != SIZE) D I00 I00

4 I0 while (usedSlots == 2) D 65 0

5 16 putP_r = (putPtr + i) 7. SIZE; A2 150 I00

17 array[putPrt] = x;

6 17 putPtr ffi pu_Ptr Z SIZE; A2 I00 I00

7 17 putPtr = (putPtr + 1) 7. 2; A2 56 0

36 getPtr = (getPtr + 1) 7. 2;

8 18 if (usedSlote =ffiSIZE) notifyAll(); D 33 100

9 18 remove: D 55 100

if (usedSlots == O) notif_AllO;

10 18 usedSlots÷+ ; D 35 100

19 if (usedSlots == 0) notifyAll();

II* 18 if (usedSlots =ffi0) notify() ; D 2 I00

37 if (usedSlots _= SIZE) notify();

12 23 while (usedSlo_s _ffi 0) D I00" I00

13 28 if (usedSlots != 0) { AI, D 100 100

14 28 if (halted) { A1 3 0

15 37 if (ueedSlote == 0) notlfyAllO; D 50 0

16 37 remove: D 44 0

(if tu_edSlots. == SIZE) notifliAUO;

17 37 use_lSlots--; D 66 0

38 if (usedSlots -= SIZE) notifyAll();

18 38 usedSlots++ AI, A2 I00 I00

19 44 remove: D 150 100

halted = true;

20" 45 notify() ; D 2 150

21 45 remove: D 150 150

noti_All();

23

7 Specifying Invariants

As described in Section 2 a JAVA program can be annotated with assertions placed in the code in

relevant positions. When execution (by the model checker for example) "hits" the assert statement,

the condition will be checked. That is, the assertion will only be checked when "it gets its turn to
ezecute".

Suppose we instead want to state a general invariant about part of the variables in the program.

That is, suppose we for example want to verify that the value of the variable usedSlots in the

Buffer class is always/ less than or equal to 2 (which is wrong, it can become 3). We shall see

solutions of how to specify and verify this in the following.

7.1 Assertion in the Code

The first solution follows a standard strategy of inserting an assertion in the code where the variable

usedSlots is incremented, as illustrated in Figure 19. The changed (added) line begins with the

symbol: "*".

public synchronized void put(0bject x) (
ehile (uedSlots == SIZE)

try (
Verify.print ("producer vait") ;
wait() ;

} ¢atch(Interruptedgxception ex) O;
Verify. print ("put" ,pUtPtr) ;
array [putPtr] = •;
putPtr = (putPtr + I) X SIZE;
iS (us_ISlots == 0) noti_yAll();
us_lSlots++ ;
Yerify.usert("usedSlots > 2",us_ISlots <= 2);

)

Figure 19: Invariant as assertion in the put method

This solutionhas the advantage that as soon as the assertionisbroken (if broken), the model

checker willdetect this.Hence, there isa slightadvantage wrt. verificationtime used to locate

an error.Also, the generated errortrace typicallyalsoisshorterthan when using the alternative

techniquesto be described inthe following.

The disadvantage of this technique iscourse that we have to figureout where the variable

isupdated. In case of mere complicated invariantsinvolvingmore than one variable,this may

become messy and errorprone. The remaining solutionsdo not have thisdisadvantage,but they

may requiremore time to locatean error.

7.2 Invariant in the main Method

An alternative solution is to place the assertion in the main method after having started all threads.

There are two ways of doing this as described in the following.

7.2.1 Directly as an Assertion

Figure 20 illustrates how the assertion is inserted at the end of the main method, after all objects
have been created and all threads have been started. The assertion now refers to the variable

b. usedSlot,, hence, it refers to the variable through the object b.

The way it works is as follows. The main method will start all the threads, and then continue

itself as a thread running in parallel with these other threads. In particular, it will be ready to

24

execute the assert statement at any time. The model checker will therefore execute it in any state.

Hence the assertion will function as an invariant that has to hold at any time.

class Main (

public static void maln(String[] args) {
Buffer b • nov Buffer();

Producer p • nov Producer(b);
Consumer c • now Consumer(b);

Vorify.assert("usedSlots > 2",b.usedSlots <= 2);
)

Figure 20: Invariant as assertion in the main method

A disadvantage of this technique is that the state contents of the Buffer class is revealed in

the main program: it for example only works if the variable usedSlots is accessible from outside

the class. In this case it is since it is protected, and such a variable is visible within the package.

Had it, however, been private, we could not have used this technique. The next solution solves

this problem, and is just as efficient.

7.2.2 Indirectly by Calling an Invariant Method

In order to make an invariant local to a class, one can state it in a method defined in the class,

and then call this method in the main method. This is illustrated in Figure 21. Note that we can
name the invariant method as we like, and it can also contain as many assertions as we like. We

can even define several invariant methods, and call only some of them at convenience.

class Buffer implements Bufferlnterfaco {

static final int SIZE = 3;

protected Object_ array = nee Object[SIZE];

protected int putPtr • O;
protected int getPtr = O;

protected int usedSlots • O;
protected boolean halted;

* public void invariant()(

* Verify.assert("usedSlots • 2",usedSlots <= 2);
*

..o

)

class Main (

public static void main(StringO args) (
Buffer b = nee Buffer();

Producer p = nee Producer(b);
Consumer c = nov Consumor(b);
b.invariantO;

)

Figure 21: Invariant as method call in the main method

The advantage of this method is that now the invariant is really local to the class. The disad-

25

vantageis that one still needs to call the invariant method in the main program, which again

means that the buffer object b must be visible in the main program. The last solution solves this
problem.

7.3 Invariant as a Thread

The final solution consists of defining the Buffer class as an extension of the Thread class, and

then definethe required run method to containa callto the invariant method. This isshown in

Figure 22. The figureshows how the Buffer classhas been extended with an invariant method,

a run method that callsthisinvariant,and a constructorthat startsthe thread. Hence, whenever

a Buffer object iscreated with the new method, a thread isstartedthat at any time may check

the assertion.Again, severalinvariantmethods can be definedand called.One can alsowrite the

assertionsdirectlyin the run method.

* class Butter oztends Thread inplemonts Bu_forInterface {

pro_oc_ed ObJoctN array = neg Object[SIZE];
protected £nt ImtPtr = O;
protoctod int getPtr = O;
protected iat uod$1ot8 = 0;
protected booloan halted;

* public void InvariantO(
* Vorify.assert("usedSlot8 > 2",usedSlot8 <= 2);
* }

* public void runO{invtritntO;}

. public Buffer(){this.start() ;}

o.°

}

Figure 22: Invariant as a thread

The disadvantage of this technique is that it only works for passive classes that are not already
extensions of the Thread class.

26

8 Features of JAVA 1.0 Not Translated

JPF translatesa subset of JAVA 1.0,and thissectionidentifiesthe featuresnot translated,each

devoted a subsectionin the following.JAVA 1.0,in turn,isa subset ofJAVA 1.1,which in addition

provides,amongst other things,inner classes.Consequently, JPF does for example not translate

innerclasses.A good and relativelyshort descriptionofJAVA [.0,and the extensionJAVA I.I,Can

be found in [21.

The translatorshould printout errormessages ifthe JAVA program isnot within the translated

subset. [n the following cases, however, no error messages will be printed even though these

featuresare not translated:method overloading,method overriding,and method recursion.The

SPIN syntax checker will,however, complain and rejectthe translatedPROMELA program. Since

SPIN's error messages may not be easilyrelatedto the JAVA program itshould preferablybe

reassured by human inspectionthat the JAVAprogram does not use any of thesefeatures.

8.1 Compilation Units

A JAVA program must consist of a single package. References to other packages, user-defined

as well as predefinedJAVA packages, such as java. fang, are not allowed. Consequently, import
declarationsare not allowed.

As a consequence,classnames must eitherreferto user-definedclassesor toone ofthe predefined

classes:Object, Thread, or Exception.

8.2 New Names

A user-definedname cannot end with underscore: '_'.The reason for thisisthat internalnames

generated by the translatorend with '_'.

8.3 Predefined Types

The following primitivetypes are not allowed: char, float, and double. The type S_;ring is

furthermore not allowed. Literalsof thesetypes are not allowed to occur in the program.

8.4 Subclassing

In a class declaration of the form:

class SomeClass extends SuperClass { ... }

the SuperClass must eitherbe a user-definedclassor one ofthe pre-de_ned JAVA CIssseS: Thread

or Exception.

8.5 Variable Declarations

8.5.1 Modifiers

The native modifier is not allowed in instance variable declarations.

8.5.2 Array Declarations

Arrays must be one-dimensional and must be given a dimension at declaration time in terms of an

integer literal, or alternatively in terms of an array initializer, as in the following examples:

static final int SIZE = 7;

int [] la = neu int [5] ;

Object[] oa = new 0bjec1:[SIZE];

byCe[] ba = .(1.9,9,9};

27

Note that if a constant (static and final) is used to define the size of an array, this constant cannot

be defined in terms of other constants - it has to be defined directly representing some integer

literal as in the above case (note that this is only a restriction on constants used in defining array

dimensions). Hence, the following is illegal:

illegal:

static final int BIGGER_SIZE - SIZE ÷ 1;

int[] b - new int[BIGGER_SIZE];

The array brackets [] have to occur in combination with the type. For example, the following
declaration where the [] brackets are associated with the array variable a is not allowed:

illegal:

inr a[] = new[5];

8.6 Methods and Constructors

8.8.1 Modifiers

The following method modifiers are not allowed: abstract and native.

8.6.2 Overloading and Overriding

Methods and constructors cannot be overloaded and methods cannot be overridden. As a conse-

quence there can be at most one constructor per class. However, each subclass of a class can have
its own constructor.

8.6.3 Recursion

Recursive methods are not allowed.

8.8.4 Names of Called Methods

Except for nser-defined methods only the following pre-defined JAVA methods can be called:

start stop sleep yield vait notify notifyAll

8.6.5 Array Argument and Return Types

The type of a method or constructor argument cannot be an array type. Similarly, the result type

of a value returning method cannot be an array type.

8.6.6 Actual Parameters in Calls

Actual parameters in method calls cannot themselves be method calls.

8.7 Expressions

8.T.l Names

Names occurring in expressions or on left-hand sides of assignment statements must be user-defined.

28

8.?.2 Object InJtantlations

An object instantiation using the new operator is only allowed in association with a variable

declaration or in an assignment statement, as illustrated here:

SomeClass s = new SomeClass(42); -- in a declaration

0therClass t;

t = new 0therClass(43); -- in an assignment statement

Similarly, an array instantiation using the new operator can only (and must) occur in an array
declaration as discussed in Section 8.5.2.

8.?.3 Assignment Expressions

Assignments are not allowed as expressions. For example, the following is not allowed:

illegal :

x = (y = y + I);

8.?.4 Unary Expressions

The following unary expressions are not allowed:

illegal:

--expr ++expr expr-- expr++ "expr

The first four of these are, however, allowed as statements!

8.?.5 Binary Expressions

The following binary operators are not allowed:

illegal :

<< >> >>> instanceof "

8.7.6 Ternary Expressions

Ternary expressions of the-form: (exprl?expr2: expr3) are not allowed.

8.8 Statements

8.8.1 Switch Statements

Each entry statement not being the last in a switch statement should exit with a break or return

as for example in the following program:

switch (x){

case-1 :

case 0 :

case I : near_zero = true;break;

default : near_zero = false

}

29

This statement will assign true to near.zero if x is either -1, 0 or 1, and otherwise false. Now,

if we remove the break s_ent, and x has the value -1, 0 or 1, it will first assign true and then
false, resulting in false. The switch statement is said to "fall through" from the first case to the

second case. This behavior is not supported, and the translator will insert the break statements

if they are not present.

8.8.2 Continue Statements

Continue statements are not allowed.

8.8.3 Labeled Statements

Labeled statements are not allowed.

8.8.4 Try-catch-finally Statements

A catch in a try statement is only allowed to catch exceptions of user-defined exception classes

or exceptions of the classes Exception, lnterruptedException or ThreadDeath, the latter being

thrown by the stop method.

30

References

[1] K. Arnold and J. Gosling. The Java Programming Language. Addison Wesley, 1996.

[2] D. Flanagan. Java m a Nutshell. O'Reilly, May 1997. Second edition, updated for Java 1.1.

[3] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. The Java Series. A-W,
1996.

[4] K. Havelund, M. Lowry, and J. Penix. Formal Analysis of a Space Craft Controller using SPIN.

In Proceedings o/the _th SPIN workshop, Paris, France, November 1998.

[5] K. Havelund and T. Pressburger. Model Checking Java Programs using Java PathFinder. 1999. "

To appear in the International Journal on Software Tools for Technology Transfer (STTT).

K. Havelund and J. Skakkebmk. Applying Model Checking in Java Verification. Describes

an application of JPF to a game server. To appear in proceedings of the 6th SPIN workshop,
Toulouse, 1999.

G. Holzmann. The Design and Validation of Computer Protocols. Pren-

tice Hall, 1991. SPIN is freely available, and can be downloaded from:

http ://net lib. bell-labs, com/netlib/spin/what ispin, html.

[6]

31

